Statistical Analysis of Haralick Texture Features to Discriminate Lung Abnormalities
نویسندگان
چکیده
The Haralick texture features are a well-known mathematical method to detect the lung abnormalities and give the opportunity to the physician to localize the abnormality tissue type, either lung tumor or pulmonary edema. In this paper, statistical evaluation of the different features will represent the reported performance of the proposed method. Thirty-seven patients CT datasets with either lung tumor or pulmonary edema were included in this study. The CT images are first preprocessed for noise reduction and image enhancement, followed by segmentation techniques to segment the lungs, and finally Haralick texture features to detect the type of the abnormality within the lungs. In spite of the presence of low contrast and high noise in images, the proposed algorithms introduce promising results in detecting the abnormality of lungs in most of the patients in comparison with the normal and suggest that some of the features are significantly recommended than others.
منابع مشابه
Statistical Analysis of Features and Classifiers in Identifying Nodules and Its T Staging in Lung Ct Images
Lung cancer is the most common disease with greater morality rate. Computed Tomography (CT) images are used for early diagnosis of lung cancer with the help of CAD system. Selection of effective feature set and proper classifier for medical images where machine learning techniques are used is a challenging task. Texture analysis of computed tomography (CT) images is one of the important prelimi...
متن کاملComputerize classification of Benign and malignant thyroid nodules by ultrasound imaging
Introduction: Early detection and treatment of thyroid nodules increase the cure rate and provide optimal treatment. Ultrasound is the chosen imaging technique for assessment of thyroid nodules. Confirmation of the diagnosis usually demands repeated fine needle aspiration biopsy (FNAB). So, current management, has morbidity and non zero mortality. The goal of the present study ...
متن کاملGenetic Algorithms for Thyroid Gland Ultrasound Image Feature Reduction
The problem of automatic classification of ultrasound images is addressed. For texture analysis of ultrasound images quantifiable indexes, called features, are used. Classification was performed using Gaussian mixture model based on Bayes classifier. The common problem of texture analysis is a feature selection for classification tasks. In this work we use genetic algorithms for a feature subse...
متن کاملAdvances in quantitative muscle ultrasonography using texture analysis of ultrasound images.
Musculoskeletal ultrasound imaging can be used to investigate the skeletal muscle structure in terms of architecture (thickness, cross-sectional area, fascicle length and fascicle pennation angle) and texture. Gray-scale analysis is commonly used to characterize transverse scans of the muscle. Gray mean value is used to distinguish between normal and pathologic muscles, but it depends on the im...
متن کاملAnalyzing texture information is interpreted as texture analysis and classifying texture based on classes of texture
-Texture analysis is significant field in image processing and computer vision. Shape and texture has groovy correlation and texture can be defined by shape descriptor. Three individual approach Zernike moment, which is orthogonal shape signifier, Gabor features and Haralick features are utilized for texture analysis. Another approach is applied by aggregating all the features for texture analy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015